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Abstract

An experimental investigation has been undertaken on the growth and departure of bubbles from arti®cial
nucleation sites. Bubbles were produced by gas di�usion from a carbonated water solution on 0.6, 1.48 and 2.08
mm diameter cavities in a horizontal plate. The departure size and growth time of the bubbles produced in the

experiments could not be accurately predicted using a force balance analysis and the assumed initial growth
condition of a bubble nucleus. A numerical simulation was developed to solve these parameters. This showed that
the bubble grows very rapidly after a neck forms. Experiments in which the bubbles grew to a height which was
several times the cavity diameter revealed that departure occurred during the rapid growth. The numerical

simulation also predicted accurately the volume of the residual bubble inside the cavity and the time until the
succeeding bubble appeared above the cavity opening. The e�ect of surface tension on the bubble departure
diameter was found to aid departure by the formation of a bubble neck rather than resisting departure as an

adherent force that attached the bubble to the surface. 7 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In nucleate boiling and in gas release from a

supersaturated solution, the departure rate of the

formed bubbles controls the heat or mass transport

rate. It is thus important to have an understanding
of the physics of bubble growth and departure.

This is evident from the de®nitive works of Forster

and Zuber [1], Plesset and Zwick [2] and Scriven
[3]. They examined bubbles in nucleate boiling

where individual bubbles form on a solid surface.

This occurs at low temperature di�erences between

the solid and the liquid. The other recognized form,
pool boiling, occurs at larger temperature di�er-

ences. Many analytical studies have been conducted

on bubble growth but most have treated the
bubbles as both spherical and rigid. A balance of

buoyant and surface tension forces was used to set
a stability criterion for the bubble departure. The
resulting equations have been generally adequate in

the prediction of the departure diameters measured
in nucleate boiling from small cavities. However,
this approach is obviously not valid for large
bubbles for which gravity produces an elongated

shape. Furthermore, the physics of the departure
was not described in detail. The balance of the
hydrostatic pressure distribution and surface tension

over the height requires that the sum of the curva-
tures increase with distance from the top of the
bubble. In large bubbles, this e�ect produces a neck

close to the surface where the bubble is attached.
This has been easily observed in the laboratory and
departure appears to be associated with the neck.

The neck is not seen in small bubbles but the
stresses which produced it must be present in all
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cases. The study described herein examines the for-

mation, growth and departure of large bubbles

using a numerical simulation and experiments. The

bubbles studied are produced in a supersaturated

liquid by gas di�usion. Furthermore, the formation

site is a ®nite cylindrical hole in a horizontal sur-

face. This case has been chosen to simplify the

departure problem to its elements. There is ample

reason for studying the growth of di�usion bubbles

because of the small number of previous studies.

The choice of di�usion-driven growth was made

here for the simplicity of both experiment and

analysis. The bubbles can be produced which are

much larger and grow much more slowly than in

boiling. Thus, images of the bubbles can be

obtained with less sophisticated methods and with

greater accuracy. Experiments were video taped

from a charge coupled device (CCD) camera and

bubble shape pro®les were digitized via a computer.

The advantage in analysis is the very small magni-

tude of the forces due to the enlargement and

acceleration of the added mass of the bubble. A

quasi-steady analysis can be utilized which can be

solved with a relatively simple numerical code. It is

not necessary to solve the Navier±Stokes equation

for the ¯ow ®eld which, although possible, is

beyond the scope of this study. These simpli®cations

were adopted primarily to allow clear documen-

tation of the development of the neck and the

departure.

The section which follows presents the equations

which describe the shape of the bubble as a balance of

the static pressure and surface tension forces. The case

of a spherical bubble and the criterion which results in

bubble departure are also mentioned. Bubble growth

by di�usion is calculated using Ficks' law. A brief dis-

cussion of the numerical solution technique is included.

Section 3 presents the technique for producing and ob-
serving the size and shape of di�usion bubbles. The
results of the measurements and calculation of bubble

shape are discussed in Section 4. Growth rates of the
bubbles are treated in Section 5 and the volume and
time at departure in Section 6. Section 7 presents some

conclusions.

2. Bubble shape and growth relations

2.1. Bubble shape

This paper addresses very slow growth rates so all
the ¯uid motion terms in the conservation equations
are small. The shape is thus de®ned by Laplace's

equation for balance of surface tension force and the
pressure di�erence across the interface. External press-
ure on the bubble varies hydrostatically and internal

pressure is constant. The origin of coordinates is the
top where the shape is spherical, so a radius of curva-
ture r0 is speci®ed. At lower elevations, the principal
radii of curvature are di�erent. Setting the internal

pressure at the vapor pressure of the liquid gives:

rgz� p0 ÿ pv � s
�
1

r1
� 1

r2

�
�1�

where p0 is the absolute pressure at the top of the
bubble in the liquid, r1 is the radius of curvature

which, as rotated, describes the latitude of the bubble.
This is centered on the axis. r2 is the radius of curva-
ture in a vertical section of the bubble which, as

rotated, describes the longitude. It is co-linear with r1
but the center is di�erent. It may be negative.
At the top of the bubble, the radii are equal. So

Nomenclature

a vertical acceleration
d diameter of cavity
D di�usivity

Eo Eotvos number
g acceleration of gravity
h height of bubble above top of cavity

ma added mass of bubble
p0 absolute pressure at top of bubble
pv vapor pressure

r0 radius of curvature at top of bubble
r1, r2 radii of curvature at any point on the bubble
s distance along surface of bubble measured

from top

td departure time
x horizontal coordinate measured from z axis
z vertical coordinate along the centerline

measured from top of bubble
V volume of bubble
V1 volume of bubble producing buoyant force

a contact angle
r density of water
rg density of carbon dioxide

s surface tension of water, carbon dioxide
interface

y internal angle of radius of curvature
measured from z axis
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p0 ÿ pv � 2

�
s
r0

�
�2�

This relation provides the initial condition for the nu-

merical integration of Eq. (1). Lengths were made
dimensionless by dividing it by d which is the diameter
of the cavity. A value of r0/d is chosen, and the

equation is integrated along the coordinate s in the
interface. The geometric relations

r1 � x

sin y
dx

ds
� cos y

dz

ds
� sin y �3�

connect x and z with y: Eliminating r1 and r2 from

Eqs. (1) and (3) yields a second-order di�erential
equation which was solved numerically using a fourth-
order Runge±Kutta routine to produce the bubble
shape. This scheme is similar to that used by Chesters

[4]. It was chosen for the simplicity of programming
and the accuracy was checked for a sphere. The
volume of the bubble is calculated from the result by

V � 2p
�h
0

r1sin y dz �4�

Very small bubbles are spherical because the internal±
external pressure di�erence is much larger than hydro-
static pressure di�erence. Writing Eq. (1) at the top

and base of the bubble gives the di�erence in the mean
radii of curvature at the two elevations as:

1

2

�
r0
r1
� r2

r2

�
ÿ 1 � rgr0h

2s
�5�

where h is height of the bubble.

For example, setting the di�erence on the left side as
1% gives:

. the maximum diameter of a full bubble as 0.54 mm

. the maximum diameter of a hemispherical bubble as
0.77 mm

for the shape to be spherical.
Throughout this paper, the analysis is quasi-steady,

that is, forces engendered by the motion of the surface

are small. The expansion of the gas forces the liquid
outward and this requires an additional pressure on
the free surface. This can be analyzed as an added

mass which is accelerated. In a typical case, this press-
ure is about 0.001 Pa which is small to the internal
pressure from surface tension of 70 Pa.

2.1.1. Complete bubble
Integration of Eq. (1) over the full surface of the

bubble from the top to the attachment at the base

where the diameter, as shown in Fig. 1, is d gives a
balance of forces on the bubble. Gauss theorem is
employed to convert the surface integral of pressure to

a volume integral. This gives an upward buoyant force
which is equal to the weight of the water in the volume
V1 which is outside the cylinder of diameter d and

height extending to the bubble surface along with an
upward pressure force on the base. Using Eq. (1) and
the total volume V as the sum of V1 and the central

cylinder gives

Fig. 1. De®nition sketch for buoyant force calculation for an attached bubble.
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rgVÿ
�
rg�hÿ C1r0 � ÿ 2s

r0

�
pd 2

4
ÿ psd sin a

� ÿma � rgV
�
a �6�

The ®rst term is the buoyancy of an unattached bubble
and the second term contains the corrections for the
negative buoyancy of the cylinder and the base press-

ure. The coe�cient C1 expresses the shape of the
curved upper surface. If it is spherical then

C1 � C2

�
1ÿ

�
2r0
d

��
C2

�
1ÿ C2

3

�
�7�

C2 � 1ÿ
�������������������������
1ÿ

�
d

2r0

� 2
s

�8�

which does not give a large correction for bubbles near

departure. In the cases measured in this study, it was a
maximum of 3%.
The third term in Eq. (6) is the surface tension

force. a is the contact angle with the surface. The net

force from the left side is equated to the change in
momentum of the liquid. The mass ma is the added
mass due to both the expansion and rise of the bubble,

and a is the upward acceleration of the bubble.
The standard method for determining bubble depar-

ture from surfaces uses this equation with the second

term set to zero, a spherical shape and zero accelera-
tion. Beginning with Jakob's [5] application of an
equation developed by Fritz [6], this balance has been

applied to many cases and with improvements for the
force exerted by the acceleration of liquid added mass.
A recent attempt was that of Mitrovic [7], which set
the pressure di�erence at the base. This was examined

in detail by van der Geld [8], and shown to be invalid,
but it did provide an approximation. It is evident that
all the detachment criteria based on Eq. (6) cannot be

valid because this balance applies at all times. As a
demonstration, consider a hemispherical bubble which
is growing extremely slowly. The right side of Eq. (6)

is set to zero, h � r0, d � 2r0 and C1 � 1=3: Thus, the
net buoyant force is zero, and the equation reduces to
the sum of the base pressure force and surface tension.
With the contact angle a � p=2, these terms are identi-

cal; and this shows that there is an equilibrium. The
same result is found for any shape of the bubble for
any cross-section. It is concluded that acylation of the

added mass and consequent force on the bubble must
be included in the analysis before a departure can be
explained. Nevertheless, many authors have set the

acceleration to zero and equated the ®rst term with the
others to set the volume at departure. For example,
Eq. (6) gives

V � p
Eo

d 3

�
1ÿ d

2r0

�
� p

4
d 2�hÿ C1r0 �

Eo � Eotvos number � g�rÿ rg �d 2

s

�9�

This relation is similar to the equation derived by van
der Geld [8]

V � pd 3

Eo
�10�

and also derived analytically by Chesters [4] for small
bubbles. None of this type of equation can be used as

a rigorous criterion for determining the bubble depar-
ture because the forces are either in balance or are
de®ning the added mass acceleration. Thus, each holds

exactly in the case of Eq. (9) or approximately in the
case of Eq. (10) at all times for the di�usion bubbles
studied herein.

2.2. Bubble growth rate

A separate calculation was programmed for the rate

of gas transfer across the interface. The bubble shape
determined by the method described above was the
starting point for each time step. Starting with a small

spherical shape, the ®eld outside the bubble was
divided into a grid and the mass transfer equation was
solved in the grid.

@C

@ t
� D

@ 2C

@r 2
� 2

r
D
@C

@ r
�11�

where D is the di�usivity of gas in water.
This gave the mass transfer rate at the free surface,

and a forward di�erence scheme was employed to set

the volume of the bubble at the end of the step. The
numerical simulation followed the bubble growth by
calculating the shape for this prescribed volume. A

value of r0 was assumed and the shape calculated to
the elevation where the diameter was d. If the volume
which resulted did not match the prescribed value, the

top radius was adjusted. This was repeated until there
was a match. With the new shape, the grid was
adjusted to preserve the constant volume of each grid
unit. As the bubble grows, the surface of the external

volumes are stretched laterally so the thickness
decreases. This e�ect increases the concentration gradi-
ent of the gas and, consequently, the mass transfer.

Boundary conditions were the supersaturated con-
centration of gas far from the bubble and the vapor
pressure within the bubble from Eq. (2). An arbitrary

initial volume was chosen at the start and the calcu-
lation proceeded until the bubble departed. At this
point, there was a residual volume in the cavity, so
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this was used as the initial condition for the second
bubble.

A full description of the simulation and the pro-
grams is given by Mori [9].

3. Gas di�usion experiments

The objective of the experiments was to study slowly

growing bubbles on a ®xed cavity. This was achieved
using water supersaturated with carbon dioxide in a
temperature-controlled environment. The bubble grew

from a cylindrical hole on a horizontal stainless steel
plate. Carbon dioxide in water was chosen because of
its high solubility thus enabling satisfactory bubble

growth rates for the temperature range, 10±508C and
the pressure range, 1±5 atm. The resulting bubbles
were 2±5 mm in diameter so were readily photo-
graphed with a CCD camera linked to a standard

VCR (video camera recorder). Images were recorded
at the standard 30 frames/s. A lens with bellows was
employed to give an image which occupied most of the

frame. Later, the recorded images were digitized as
GIF ®les using a frame grabber and stored on personal
computer discs for analysis. No corrections to the

image were required for the di�raction through the
cylindrical surface because there was water on both
sides of the glass cylinder and an external plane view-
ing surface.

The pressure vessel, shown in Fig. 2, was made by
clamping a glass cylinder of internal diameter 49.45
mm, length 100 mm between two stainless steel plates.

A rubber O-ring was used to seal the glass joint. The

glass cylinder was designed to withstand 10 atm press-

ure. A square cylinder fabricated from acrylic plastic
surrounded the glass cylinder and water circulated

between the two. This came from a continuously circu-

lating loop supplied by a pump. The loop passed
though a water bath with thermostatic controls. Tem-

perature of the supply water and loop were monitored
continuously. The di�erence between these was 0.28C
or less during the experiments.

The lower end plate had a raised section so that the
camera had an unobstructed view of the base of the

bubble. The cylindrical cavity was drilled mechanically
in the center of the raised metal surface and this served

as the nucleation site. A separate plate with a di�erent

cavity diameter was dropped into the cylinder for two
other tests. In both cases, the cavity radius was deter-

mined by photography.

Two supply tubes passed through the upper plate.
One carried distilled water and the other carried car-

bon dioxide gas from a high pressure tank through a
regulator (Matheson 3104A) inlet and outlet two press-

ure gauges. The water in the glass cylinder was initially
pressurized at several atmospheres and the test tem-

perature for long enough to full saturation. At the

start of a test, the gas was depressurized to an atmos-
pheric one. This unstable condition produced a gas

bubble at the prepared site and, on some occasions, at
other natural sites. A sequence of 6±10 bubbles were

then recorded on videotape.

The scale of each image was obtained by measuring
the width of the cavity in the frame. Before the appar-

atus had been sealed, the hole was viewed perpendicu-

lar to the axis and a standard scale was included in the

Fig. 2. Cross-section of pressure vessel used in bubble growth experiments.
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image. The edge of the bubble was easily seen to an

accuracy of 1/2 pixel on the monitor screen, and the

pixel location was determined using software written

for this project. This dimension when compared to the

diameter of the cavity indicates an accuracy of 2%.

Width, height and volume were calculated from the

pixel interval and scaling. After inception, the bubble

shape was a spherical sector which expanded with

Fig. 3. Comparison of the bubble neck formation for cavity diameters of d � 1:43 mm (upper) and d � 2:08 mm (lower).
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Fig. 4. Photos of bubbles on the cavity with d � 2:08 mm during growth in a typical test. Time is (a) 0 s, departing bubble seen at

the top, (b) 40 s, (c) 70 s, (d) 90 s, (e) 105 s and (f) 107 s.
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time. At some point after the bubble was larger than a
hemisphere, the shape became elongated vertically. The

stretching extended until the time of detachment. Im-
mediately before detachment, a neck or narrowing is
formed near the cavity, as can be seen in Fig. 3. The

sets of photos show bubbles attached to the cavities of
diameter d � 0:6, 1.43 and 2.08 mm. The images on
the left show the neck formation, and those on the

right are the last ones recorded before detachment. In
the largest cavity, the neck collapsed at a section
above the surface leaving a small bubble which

extended above the solid surface. However, no neck or
residual bubble was visible on the smaller ones. How-
ever, it was deduced from the time interval between
departure and appearance of a bubble top that there

must have been a residual bubble inside it. This wait-
ing time was predicted accurately by the numerical
simulation.

4. Bubble shape

As the bubble grew from the cavity, the shape chan-

ged from spherical to ovoid with the height greater
than the width and then to a neck. Soon after the neck
appeared, the bubble center accelerated upward and it

departed. The shape progression is shown in the series

of photos in Fig. 4. The deviation from sphericity can

be determined quantitatively by plotting the volume as
a function of height, as shown in Fig. 5. The solid

curve is the height of a sphere attached to a cavity of

diameter d as a function of the volume. Points are the
mean heights measured from the images.

Vertical bars show the range of individual measure-

ments. The deviation from sphericity starts at a height
of 1.9 mm which is a bubble radius of 1.07 mm for the

cavity diameter of 1.46 mm. This is about four times

the value given by Eq. (5) for a 1% variation of hydro-
static pressure over the height of the bubble. This

shows that the pressure must deviate from uniform by
a much larger value than 1% for the non-spherical

shape to be evident in the image and the integral prop-

erties of the bubble.
Fig. 6a and b present a comparison of the measured

and calculated bubble shapes as a function of time.

The points are scaled from the photos and the lines
are the results of the numerical simulati. Time was

measured from the departure of the antecedent bubble.
In the numerical simulation, the volume at time zero

was taken to be the volume of the bubble below the

neck at the break-o�. The comparison is generally
good but, at later times, the top of the measured

bubble is ¯attened slightly as compared to the predic-

tion. This is an artifact of this particular set of images.

Fig. 5. Plot of bubble height as a function of volume for the test with d � 1:46 mm. Carbon dioxide gas in water, temperature =

9.878C, gas saturation pressure = 6.24 atm. Points are measurements, line is height for a sphere of the same volume.
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A distortion was produced by the VCR which ¯attened

the top of the image. This was recti®ed for the images
used for volume measurements.

5. Bubble growth

In each test, six or eight bubbles were measured
from the video images and the volume calculated by

numerically integrating the horizontal cross-section
area. In each test, there was a small variation in
growth rate, and the height and volume at departure.
A typical test is summarized in Fig. 7, where the

volume growth is plotted. The vertical bars on the ex-
perimental points show the extreme values of the eight
bubbles. The line is the numerical simulation. The

agreement is close. In other tests, the two coincided.
On the vertical axis, the volume of the bubble above
the top of the cavity is plotted. For the simulation, the

gas volume in the cavity at time zero was determined
by calculating backwards from the time at which the
top of the bubble was seen at the top of the cavity.

This was necessary for d � 1:46mm tests because the
bubble separated just below the line of sight and the

residual bubble could not be seen. The average level of
the top of the bubble was calculated by this scheme to
be 0.535 mm, so the bubble grew by 1.98 mm3 before

it could be seen. The waiting time, which was 7.6 s for
this test, varied with the water temperature and gas
saturation pressure. However, the water volume in the

cavity was 1.98 mm3 in each case. Waiting time was
the interval between departure of a bubble and appear-
ance of the top of the following one at the top of the

cavity.
The waiting time was more readily determined in the

analysis of the large cavity. Fig. 8 is the image taken
just at departure. The neck is clearly visible and the

spherical shape of the section is in contact with the
cavity wall. As the bubble grows further, the neck
moves downward; and at departure, the interface

breaks at the neck. The residual bubble from which
the next one grows is the volume below the neck upon
breaking. This bubble retreats into the cavity and the

top is not seen in the waiting time, that is, until di�u-
sion has produced growth to the top of the opening.

6. Bubble departure

This is a rapid process, even for these slowly grow-

ing bubbles. Fig. 9a±d are frames taken 1/30 s apart as
the event occurred. The neck is just visible in the third
photo and the bubble has departed in the fourth one.

Fig. 6. Plots of bubble cross-section for d � 1:46 mm. Carbon

dioxide gas in water, temperature = 9.878C, gas saturation

pressure = 6.24 atm. Points are measured and lines are from

numerical simulation. (a) Spherical shapes at t � 9, 11 and 13

s. (b) Ovoid shapes at t � 17, 21 and 22.5 s.

Fig. 7. Bubble volume as a function of time since departure

of the antecedent bubble. Temperature = 19.978C, gas satur-

ation pressure = 5.29 atm. Curve is the numerical simulation,

points are measured.
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Detailed comparison of the shapes reveals that the top

radius is larger in the second photo than in the ®rst

one but it is the same in the third and second photos.

This is explained by following the shape, volume and

height throughout the bubble growth. As the volume

increases by di�usion, the radius increases. At the

start, the shape is a spherical sector which expands to

a rough hemisphere for which the contact angle is p=2:
Then, as the bubble expands, the contact angle

decreases. This neck development was followed in the

numerical simulation but no break in the free surface

ensued.

First, consider the numerical solution for a large top

radius plotted in Fig. 10. The edge of the cavity at

x=d � 0:5 could be found at three values of z/d. The

smallest, z=d � 0:18, is for a spherical sector, and this

would be seen as the bubble emerges from the cavity.

The second, z=d � 2:10, would be the shape of the

bubble attached to the top edge of the cavity, and the

third would be the bubble attached at both the edge

and at the cavity inside the wall. It was seen in every

case that the bubble grew from the hemispherical

shape to the second case with steadily increasing top

radius. Then, suddenly it detached at the top edge and

attached on the wall at the z/d, for the largest z/d.

Fig. 8. Bubble at departure from the large cavity.

Fig. 9. Images of bubble departure taken 1/30 s apart. Conditions as given in Fig. 8.
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There was no change in the bubble volume above the
wall for this jump. As di�usion continued and the

volume increased, the attachment point rose in the cav-
ity so the neck could be seen above the surface, as
shown in Fig. 8. The shape was maintained with this

volume increase and would have continued until con-
tact was at the edge. However, the bubble detached
before or as the edge was reached. A good approxi-

mation of the detachment time is, thus, the instant at
which the lower contact point was at the edge. The nu-
merical simulation does not produce detachment, and

if it is continued beyond the edge attachment, it pro-
duces a top radius increase and the neck descent until
the neck radius x=d � 0:5: Here, it is at the edge. Any
increase in volume and top radius requires x=d > 0:5,
so the attachment point is on the wall outside the cav-
ity. This was not seen in any of the cases. Fig. 11 is a
plot of the height as a function of volume for the three

attachment levels. The open squares follow the growth
to the hemisphere, and the open circles follow the
growth of the second height value. The solid circles are

the heights for the largest value of z/d. The dashed line
shows the volume±height relation as the attachment
point rises inside the cavity. It could connect the upper

and lower lines at any location. However, the exper-
iments indicated that this occurred for a contact angle
of 788. The limiting volume for attachment with the cavity is the maximum volume on the right. The height

for this case is less than that after the jump. Detach-

ment might be produced by the force of the added
mass which, although small, would have to be negative
in this region.

Writing Eq. (9) for the neck cross-section using the
dimensionless variables gives a relation for the depar-

Fig. 11. Volume of bubble as a function of height for

Eo � 0:600and x=d � 0:5: Top radius r0/d varies from 0.5 to

0.802. Contact points are intersections with dotted lines in

Fig. 10. Dashed line shows jump of contact point at neck for-

mation.

Fig. 10. Bubble shape as calculated for Eo � 0:600,
r0=d � 0:780: Dotted line is x=d � 0:5, which is edge of the

cavity.

Fig. 12. Bubble volume at departure. Points are measurements

and solid line is numerical simulation of large bubbles. Dotted

line is Eq. (10) which was developed for small cavities.
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ture volume in terms of the neck dimensions:

Vn � p
Eo

dn
d

�
1ÿ dn

2r0

�
� p

4

�
p
Eo

� 2 hn
d

�12�

where the subscript n denotes the property at the neck.

This agreement and the calculation which showed
that the hydrodynamic forces were much smaller than
the buoyant and surface tension forces indicate that

the shape is well described by the quasi-steady approxi-
mation. Thus, the simulation was used to set values of
the volume and time at departure. The volume was

taken to be that at the neck. For quasi-steady growth,
the bubble volume at departure would depend only on
the variables noted above, that is, buoyancy,

V

d 3
� fcn�Eo, a�

cavity diameter and surface tension.

Since the contact angle is p=2 at the neck, the
sine is unity. Measurements of the volume in the
last frame before departure gave the mean values of

the parameters plotted in Fig. 12 for the mean of
10 bubbles. The results of the numerical simulation
using the volume at the neck are also shown in

this plot. The solid line is the plot of these calcu-
lations. The dashed line is Eq. (10) which lies
above the measured and calculated values. Inasmuch

as Eq. (10) was derived for small bubbles, it would

not be expected that it would apply to large ones.

In the range of these studies, the volume is about

2/3 of that given by Eq. (10). There does not

appear to be an approach to it as bubble size

decreases. Inserting the calculated or measured

values for the neck in Eq. (12) gives a prediction

for the volume at departure. These are identical to

the values given in Fig. 12 as would be expected.

Both were formed from the numerical solution.

Although the numerical solution can be used to

de®ne the volume at departure, yet the mechanics

of departure have not been explained. All the pub-

lished analyses use the force balance of buoyancy

and surface tension, but this has been shown to be

an invalid approach. It will probably be necessary

to include the liquid motion in the analysis to pro-

vide this explanation. A signi®cant fact noted in the

numerical simulation was that the height of the

bubble does not grow after the bottom of the neck

region reaches the edge of the cavity. This indicates

that the water ahead of the bubble would decelerate

and, hence, produces a negative pressure on the

top. This could change the shape of the bubble

and, in particular, the neck so that it would su�-

ciently reduce in size to close the neck.

The time of departure, which is the time interval for

bubble attachment, is controlled by the rate of di�u-

Fig. 13. Measured time interval between departures as function of the mass transfer driving potential.

B.K. Mori, W.D. Baines / Int. J. Heat Mass Transfer 44 (2001) 771±783782



sion of gas from the environment. It thus increases
with both the di�usivity D and the di�erence in density

of the gas in the environment and in the bubble Drg:
The product of these is the driving potential for mass
transfer. The plot of measured departure times for all

the experiments in Fig. 13 demonstrates that cavity
size has little, if any, in¯uence on the mass transfer.

7. Conclusions

A numerical simulation of the growth of a di�usion
driven bubble has been developed and solved. It uses
the Laplace equation for the bubble surface boundary
condition and the radial mass transfer approximation

for the surface mass transfer. Two standard forward
di�erence schemes are used to integrate the relations.
The results agree well with a series of experiments of

carbon dioxide bubbles in water. It is concluded that
this simple approach is valid and can be applied to
many other cases. For example, di�usion bubbles

which nucleate from very small surface cavities could
be solved if the contact angle can be well de®ned. The
scheme has already been applied to vapor bubbles in a

superheated liquid with good results. These calcu-
lations will be reported in another paper.
The experiments and simulation demonstrate that

the volume at detachment is not described by a force

balance but can be set by the Eotvos number, which is
a dimensionless number containing buoyancy, surface
tension and cavity diameter. Numerical values

obtained in the experiments con®rm those from the
simulation. It is hoped that this approach will simplify
the analysis of nucleate boiling.
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